Crystal Structure of Glycine Silver(I) Nitrate

By J. K. Mohana Rao* and M. A. Viswamitra
Department of Physics, Indian Institute of Science, Bangalore-12, India

(Received 11 August 1971 and in revised form 19 October 1971)

Abstract

The crystal structure of glycine silver(I) nitrate, $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH} . \mathrm{AgNO}_{3}$, has been solved in the nonferroelectric phase by the heavy-atom technique and refined to an R value of about 11% with four sets of intensity data, three sets collected at room temperature and one at $-135^{\circ} \mathrm{C}$. The particular crystal with which the low temperature data were collected was found to have the space group $P 2_{1} / a$ although the reported ferroelectric transition to $P 2_{1}$ is at $-55^{\circ} \mathrm{C}$. The crystals are monoclinic with four molecules in a unit cell of dimensions $a=5 \cdot 451$ (4), $b=19 \cdot 493$ (10), $c=5 \cdot 441$ (8) \AA and $\beta=100^{\circ} 12^{\prime}\left(15^{\prime}\right)$ at room temperature, with space group $P 2_{1} / a$. The silver atoms related centrosymmetrically are separated by a distance of $2.88 \AA$, the distance found in metallic silver. They bridge centrosymmetrical pairs of carboxyl groups forming dimers of glycines. The glycines in the structure exist as zwitterions, $\mathrm{NH}_{3}^{+} \mathrm{CH}_{2} \mathrm{COO}^{-}$, the nitrogen atom being displaced from the mean plane of the α-carbon atom and the carboxyl group by $0.33 \AA$. The glycine nitrogen atom forms three $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds with non-equivalent nitrate oxygens at less than $3 \AA$ distance. The silver atoms are likely to play the most significant role in the ferroelectric transition of this crystal.

Introduction

Pepinsky, Okaya, Eastman \& Mitsui (1957) discovered that glycine silver(I) nitrate, $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH} . \mathrm{AgNO}_{3}$ (abbreviated hereafter as GSN), was ferroelectric below $-55^{\circ} \mathrm{C}$. This was the first crystal containing either silver or the nitrate ion in which ferroelectricity was observed. GSN has a spontaneous polarization, P_{s}, of 0.55 microCoulomb. cm^{-2} at $-195^{\circ} \mathrm{C}$. On partial substitution of silver by lithium or thallium, the Curie point is raised by about $15^{\circ} \mathrm{C}$ (Pepinsky, Vedam \& Okaya, 1958; Pepinsky, Vedam, Hoshino \& Okaya, 1958). This crystal has the point group symmetry $2 / m$ at room temperature and 2 in the ferroelectric phase. From the nature of $P_{s} v s . T$ curve, it was concluded by Pepinsky and his colleagues that the transition was of the second order. However, no specific heat anomaly was observed by them. Mitani (1964) carried out dielectric measurements as well as lattice deformations from an X-ray study.

In the authors' laboratory, considerable research on various aspects of GSN has been in progress in recent years. Warrier \& Narayanan (1967; see also Narayanan \& Warrier, 1967) have recorded the infrared spectra of this compound and Easwaran (1966) the p.m.r. spectrum of a polycrystalline specimen. Tiwary, Devanarayanan \& Narayanan (1969) measured the thermal expansion coefficient along the b axis using the Fizeau interferometric technique. The crystal structure analysis of GSN was taken up in view of these interests. A preliminary report of the structure has already appeared (Mohana Rao, 1968).

[^0]
Crystal growth

Crystals of GSN, of both acicular and platy habit, are grown in the dark by the evaporation of an aqueous solution containing stoichiometric amounts of glycine and silver nitrate. The crystals are normally transparent and colourless, but change their colour progressively from brown to black when exposed to light and X-rays.
They are very soft and plastic, tending to crumble on application of even a light touch. There are very good cleavage planes perpendicular to the a and b axes. The crystals can also be easily bent about the (010) plane. Because of the extreme plasticity of crystals, very few samples could survive cutting and grinding in general. Also, some of the crystals got damaged even after a few hours of exposure to X-rays while some others could withstand prolonged X-ray dosages.

Crystal data

Glycine silver nitrate (GSN) $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH} . \mathrm{AgNO}_{3}$. Forms present: clinopinacoids $\{010\}$; prisms $\{110\}$, $\{120\}$ and $\{130\}$; clinodomes $\{021\}$.
Formula weight 249.96
Melting point $\quad 145^{\circ} \mathrm{C}$
Transition temperature $-55^{\circ} \mathrm{C}$
At room temperature:

a	$5 \cdot 451(4) \AA$
b	$19 \cdot 43(10)$
c	$5 \cdot 541(8)$
β	$100 \cdot 2(0 \cdot 25)^{\circ}$
V	$579 \cdot 5 \AA^{3}$

Observed density $\quad 2.79$ (3) g.cm ${ }^{-3}$
Calculated density 2.806

Number of molecules in the unit cell $=4$
Linear absorption coefficient ($\lambda=1.5418 \AA$): $290.3 \mathrm{~cm}^{-1}$
Number of electrons in the unit cell: 472
Systematic absences at room temperature:
$h 0 l: \quad h=2 n+1$
$0 k 0$: $\quad k=2 n+1$
Space group $=P 2_{1} / a$.
Intensity data at room temperature and at $\mathbf{- 1 3 5}{ }^{\circ} \mathrm{C}$
The complete structure analysis of GSN involved the use of data from six different crystals, one set of data being at $-135^{\circ} \mathrm{C}$ as given in Table 1. The data were collected by the multiple-film equi-inclination Weissenberg procedure using Ilford, Agfa or Indu films, depending on the availability of the particular brand of film. The crystals 5 and 6 were nearly 8 mm long.

Data were collected from these by feeding into the Xray beam fresh regions of the crystals once in every 200 hours of exposure (the exposure time for each layer was approximately $70-100$ hours). Thus it was possible to collect the complete $h k L$ data from each of these crystals, the effect of radiation damage on X-ray intensities being reduced at the same time to the minimum. The intensities were visually estimated with a time-exposure calibrated strip and corrected for absorption and Lorentz-polarization factors as well as for spot shape in the upper layer Weissenberg pictures (Phillips, 1954) using a program written by Kannan (1965). Data obtained about different axes were put on the same relative scale by comparison of the reflections common to $h k l$ and $0 k L$ Weissenberg pictures.
The cryostat used for work at low temperatures was the one designed earlier by Viswamitra \& Kannan

Fig. 1. Schematic diagram of the low temperature set-up.
(1962) in the authors' laboratory. A schematic diagram of the low temperature set-up is given in Fig. 1. The cylindrical film cassette (Fig. 1 top right) is split and hinged on one side so that it can be opened and slipped over the screen tubes without disturbing in any way the low temperature set-up (Viswamitra, 1971).

Twinning

The crystals 5 and 6 (see Table 1) were found twinned in such a way that the two sets of spots from the twins overlapped completely in the $h k 3$ layer. In all the other layers, the intensities due to the twin components were clearly separated. Of the two sets of separated spots, one was stronger than the other, the average ratio (called the twinning ratio) of the stronger to the weaker being about $6 \cdot 5$ and $29 \cdot 0$ respectively for the fifth and sixth crystals. The overlap of spots in the third layer was such that $0 k 3$ reflections coincided with the $\overline{1} k 3$ reflections, $1 k 3$ with $\overline{2} k 3$ etc., because the twin pairs of reflexions $h k 3$ and $\overline{\mathrm{h}+1}, k, 3$ had practically the same $\sin ^{2} \theta$ values.

To evaluate the separate intensities of the overlapping pair from their composite intensities in the third layer, the following procedure was adopted. If I_{1} and I_{2} are the true intensities of the $h k 3$ and $\overline{\mathrm{h}+1}, k, 3$ reflexions and I_{1}^{\prime} and I_{2}^{\prime} are the measured intensities of reflexions 'indexed' as $h k 3$ and $\overline{\mathrm{h}+1}, k, 3$ then

$$
\begin{equation*}
(1+x) I_{1}^{\prime}=I_{1}+x I_{2} \text { and }(1+x) I_{2}^{\prime}=I_{2}+x I_{1} . \tag{1}
\end{equation*}
$$

Rearranging, we get

$$
\begin{equation*}
I_{1}=\frac{(1+x)\left(I_{1}^{\prime}-x I_{2}^{\prime}\right)}{\left(1-x^{2}\right)} \text { and } I_{2}=\frac{(1+x)\left(I_{2}^{\prime}-x I_{1}^{\prime}\right)}{\left(1-x^{2}\right)} \tag{2}
\end{equation*}
$$

Fig. 2. The structure as viewed down the a axis. The equivalent positions are represented as follows:

$$
\begin{aligned}
\text { I } & x, y, z \\
\text { II } & \frac{1}{2}+x, \frac{1}{2}-y, z \\
\text { III } & \frac{1}{2}-x, \frac{1}{2}+y,-z \\
\text { IV } & -x,-y+1,-z
\end{aligned}
$$

where x is the reciprocal of the twinning ratio. The procedure given here is the same as that given by Grainger (1969) independently.

Structure determination and refinement

Initially, the structure was solved by the use of data collected with crystals 1 and 2 . The silver position was first obtained at $(18 / 120,2 / 120,-21 / 120)$ from the $h k 0$ and 0 kl projection Patterson syntheses. The rest of the structure was obtained from a three-dimensional Fourier synthesis based on the phases of silver with 358 coefficients.

For the purpose of refinement, the data from crystals 2, 3 and 4 were combined and these are designated as set 1 . The data, later collected with crystals 5 and 6 at room temperature, designated as sets 2 and 3 , were refined separately. Set 4 corresponds to the low temperature data with crystal 5 . The space group for all these sets of data is $P 2_{1} / a$.

Table 1. Details of the data collected using the various crystals of GSN

Crystal	Layers collected	No. of reflexions recorded	Mean radius of the No.	$h k L(l=0$ to 3$)$

Table 2. Results of the refinement in the final cycle

	Set 1	Set 2	Set 3	Set 4 L.T.
No. of reflexions used in the refinement	825	627	799	631
R value for all the atoms	$0 \cdot 111$	$0 \cdot 114$	$0 \cdot 111$	$0 \cdot 125$
R value for silver atom alone	0.239	0.258	$0 \cdot 244$	$0 \cdot 257$
Maximum value of Δ / σ	0.83	4.55	0.54	2.83
Average value of \triangle / σ	$0 \cdot 11$	0.65	0.09	$0 \cdot 68$
Minimum value of Δ / σ	0.00	0.01	0.00	0.01
Total no. of reflexions	854	651	817	658
R value for all the atoms	$0 \cdot 125$	$0 \cdot 126$	$0 \cdot 119$	$0 \cdot 140$
R value for silver atom alone	$0 \cdot 244$	$0 \cdot 262$	$0 \cdot 248$	$0 \cdot 258$

The refinement was carried out on a CDC 3600 computer for all four sets of data using the program $L A L S$ written by Gantzel, Sparks \& Trueblood. The weighting scheme due to Cruickshank

$$
\begin{equation*}
w=1 /\left(a+\left|k F_{o}\right|+c\left|k F_{o}\right|^{2}+d\left|k F_{o}\right|^{3}\right) \tag{3}
\end{equation*}
$$

was used with $a=20 \cdot 0, c=0.0133, d=0.00025, k=1 \cdot 0$. The refinement in the initial stages was carried out isotropically using full matrix, and later anisotropically in diagonal approximation. The anisotropic thermal parameters were of the form

$$
\begin{align*}
& T=\exp -\left(b_{11} h^{2}+b_{22} k^{2}+b_{33} l^{2}\right. \\
&\left.+b_{12} h k+b_{13} h l+b_{23} k l\right) . \tag{4}
\end{align*}
$$

Considerable discrepancy was observed between the F_{o} and F_{c} values of a few reflexions in each set of data. These were omitted in the final refinement. Refinement was stopped when the shifts were less than the standard

Fig. 3. A view along the [010] direction, showing the existence of glycine-dimers bridged by silver atoms. All the labelled atoms have the coordinates (x, y, z).

Fig. 4. The contents of the unit cell when viewed along the c axis. The asymmetric units have the following code:

$$
\begin{array}{ll}
\text { I } & x, y, z \\
\text { II } & \frac{1}{2}+x, \frac{1}{2}-y, z . \\
\text { III } & \frac{1}{2}-x, \frac{1}{2}+y,-z . \\
\text { IV } & -x+1,-y+1,-z .
\end{array}
$$

Fig. 5. The surroundings of the silver atoms related by the inversion centre at $(0,0,0)$. The $\mathrm{Ag}-\mathrm{Ag}$ bond is represented by thick, partially shaded lines. The labelled atoms have the following coordinates:

$$
\begin{array}{lc}
\mathrm{O}(2), \mathrm{O}(5), \mathrm{Ag} & x, y, z . \\
\mathrm{O}\left(1^{\prime}\right) & -x,-y,-z . \\
\mathrm{O}\left(2^{\prime \prime}\right) & -x+1,-y,- \\
\mathrm{O}\left(1^{\prime \prime \prime}\right) & x, y, z-1 .
\end{array}
$$

deviations. The results of the refinement in the final cycle are given in Table 2.

The scattering factors for the silver ion as well as the oxygen, nitrogen and carbon atoms were those given by Cromer \& Waber (1965). The Ag^{+}form factors were corrected for dispersion with the Δf^{\prime} term added on to the real part of the form factors already obtained. The angular dependence of $\Delta f^{\prime \prime}$ was not taken into account.

Results

The positions of the atoms in the asymmetric part of the unit cell and their thermal parameters are given in Table 3. The anisotropic thermal parameters from the different sets of data are widely different and they are not accurate enough to merit any discussion. However, it can be seen from Table $3(b)$ that the average B values obtained from low temperature data are, in general, half as large as those obtained at room temperature, indicating a significant reduction of thermal vibrations on cooling. Table 3(a) also gives the peak heights at the atomic sites and their standard deviations. These standard deviations were calculated by the use of the (Cruickshank, 1965) formula:

$$
\begin{equation*}
\sigma^{2}[\varrho(x y z)]=\left(1 / V^{2}\right)\left[\sum_{\text {indep }}\left\{\sigma^{2}(F)\left(\sum_{\text {form }} \cos \theta\right)^{2}\right\}\right] \tag{5}
\end{equation*}
$$

where $\sigma(F)$ was taken as $\| F_{o}\left|-\left|F_{c}\right|\right|$. These were calculated using a program written by one of the authors (J.K.M.R.) in FORTRAN for the space group $P 2_{1} / a$. Figs. 2, 3 and 4 are three views of the structure looking down the a, b and c axes.

In the following paragraphs, the distances and angles

Table 3. Fractional coordinates, thermal parameters, and observed and calculated electron densities
(a) Fractional coordinates of the atoms in the asymmetric part of the unit cell and the observed and calculated electron densities (e. A^{-3}) with their errors. The maximum standard deviation (from least-squares) and the maximum deviation from the mean value corresponding to the sets 1,2 and 3 are also given.

Ag		Mean value	At room temperature Max. standard deviation	Max. deviation from the mean	At low temperature	
	x	$0 \cdot 1450$	0.0004	0.0015	0.1437	0.0005
	y	0.01631	0.00010	0.00013	0.01663	$0 \cdot 00012$
	z	-0.1855	0.0004	0.0007	$-0 \cdot 1852$	0.0004
	$\varrho_{\text {obs }}$	$86 \cdot 5$	0.5	16.0	$106 \cdot 3$	$0 \cdot 6$
	$\varrho_{\text {cal }}$	$87 \cdot 8$		$14 \cdot 8$	$103 \cdot 6$	
O(1)	x	$0 \cdot 166$	0.003	0.004	$0 \cdot 167$	0.005
	y	$0 \cdot 0430$	$0 \cdot 0009$	0.0016	0.0394	$0 \cdot 0012$
	z	$0 \cdot 401$	0.003	0.003	$0 \cdot 408$	0.004
	Qobs	$10 \cdot 2$	$0 \cdot 4$	0.7	15.4	$0 \cdot 6$
	ϱ cal	$10 \cdot 2$		$0 \cdot 6$	$14 \cdot 0$	
O(2)	x	$0 \cdot 412$	0.003	0.000	$0 \cdot 419$	0.004
	y	$0 \cdot 0645$	0.0009	0.0015	0.0641	$0 \cdot 0012$
	z	$0 \cdot 126$	0.003	0.004	$0 \cdot 126$	0.004
	$\varrho_{\text {obs }}$	$10 \cdot 9$	$0 \cdot 4$	2.0	11.7	$0 \cdot 6$
	$\varrho_{\text {cal }}$	$11 \cdot 1$		$2 \cdot 0$	$10 \cdot 2$	
O(3)	x	$0 \cdot 151$	0.003	0.002	$0 \cdot 166$	0.005
	y	0.2074	0.0010	0.0009	$0 \cdot 2092$	0.0013
	z	$0 \cdot 180$	0.004	$0 \cdot 001$	$0 \cdot 173$	0.005
	$\varrho_{\text {obs }}$	$10 \cdot 4$	0.4	$0 \cdot 1$	11.2	$0 \cdot 6$
	@cal	$10 \cdot 7$		$0 \cdot 3$	$10 \cdot 6$	
O(4)	x	0.103	0.005	0.004	$0 \cdot 115$	0.005
	y	0.2124	0.0013	0.0020	0.2129	$0 \cdot 0012$
	z	-0.222	0.005	0.004	-0.227	0.004
	Qobs	$6 \cdot 7$	0.5	1.9	9.0	$0 \cdot 6$
	ϱ cal	$6 \cdot 9$		$1 \cdot 8$	$8 \cdot 2$	
O(5)	x	-0.095	0.004	0.001	-0.094	0.004
	y	0.1360	0.0010	$0 \cdot 0004$	$0 \cdot 1367$	$0 \cdot 0009$
	z	-0.038	0.004	0.004	-0.018	0.004
	Qobs	9.0	$0 \cdot 5$	$2 \cdot 7$	$10 \cdot 6$	$0 \cdot 6$
	ϱ cal	$9 \cdot 1$		3.0	$10 \cdot 5$	
N(1)	x	0.689	0.004	0.004	0.700	0.006
	y	$0 \cdot 1589$	0.0011	$0 \cdot 0003$	$0 \cdot 1571$	$0 \cdot 0014$
	z	0.403	0.005	$0 \cdot 002$	0.408	0.005
	@obs	$8 \cdot 3$	0.4	$2 \cdot 7$	$8 \cdot 4$	$0 \cdot 6$
	$\varrho_{\text {cal }}$	$8 \cdot 5$		2.6	7.9	
N(2)	x	0.047	0.004	0.004	0.069	0.005
	y	0.1884	0.0010	0.0025	$0 \cdot 1882$	0.0013
	z	-0.030	0.004	0.005	-0.031	0.006
	Qobs	8.9	$0 \cdot 4$	0.7	8.4	$0 \cdot 6$
	$\varrho_{\text {cal }}$	$9 \cdot 1$		0.7	7.9	
C(1)	x					
	y	0.0710	0.0012	0.0024	0.0698	0.0013
	z	0.333	0.005	0.002	0.340	0.005
	@obs	7.2	$0 \cdot 4$	2.0	7.5	0.6
	¢cal	$7 \cdot 7$		$2 \cdot 1$	7.4	
C(2)	x	0.516	0.005	0.007	0.525	0.005
	y	$0 \cdot 1166$	0.0015	0.0008	0.1145	0.0014
	z	$0 \cdot 524$	0.006	0.004	0.532	$0 \cdot 106$
	Qobs	7.8	0.5	1.4	6.6	0.6
	Qcal	8.0		1.7	$6 \cdot 7$	

Table 3(cont.)
(b) Anisotropic thermal parameters of the atoms in the asymmetric part of the unit cell. The temperature factor was of the form given in equation (4). The equivalent isotropic temperature factor, $B\left(\AA^{2}\right)$, was calculated using the Hamilton (1959) formula. The maximum standard deviation (from least-squares) as well as the maximum deviation from the mean value corresponding to the sets 1,2 and 3 are also given.

C(1)	b_{11}	0.036	0.009	0.021	0.021	0.011
	b_{22}	0.0013	0.0005	0.0006	$0 \cdot 0010$	0.0006
	b_{33}	0.033	0.010	0.035	0.010	0.010
	b_{12}	-0.004	0.003	0.003	-0.003	0.004
	b_{13}	-0.036	0.014	0.053	0.012	0.018
	b_{23}	-0.001	0.004	0.003	0.003	0.004
	B	3.7		$2 \cdot 5$	1.6	
C(2)	b_{11}	0.028	0.009	0.002	0.010	0.009
	b_{22}	0.0023	0.0008	0.0009	0.0016	0.0006
	b_{33}	0.034	0.013	0.032	0.010	0.009
	b_{12}	-0.007	0.004	0.002	0.004	0.004
	b_{13}	-0.014	0.019	0.006	0.010	0.016
	b_{23}	-0.006	0.005	0.003	-0.004	0.004
	B	$3 \cdot 8$		1.7	1.5	

Table 4. Surroundings of the silver atom in the structure
The maximum standard deviation as well as the maximum deviation from the mean value corresponding to the data sets 1,2 and 3 at room temperature are given with the values at low temperature.

	At room temperature		Max. deviation from the mean	At low temperature	
		Max.			
	Mean value	standard deviation		Value	Standard deviation
Distances in \AA					
$\mathrm{Ag}-\mathrm{O}(1)(-x,-y,-z)$	$2 \cdot 22$	0.02	0.01	$2 \cdot 18$	0.02
$\mathrm{Ag}-\mathrm{O}(2)$	2.25	0.02	0.01	$2 \cdot 26$	0.02
$\mathrm{Ag}-\mathrm{O}(1)(x, y, z-1)$	2.37	$0 \cdot 02$	0.02	$2 \cdot 32$	0.02
$\mathrm{Ag}-\mathrm{O}(2)(-x+1,-y,-z)$	2.85	$0 \cdot 02$	$0 \cdot 03$	2.79	0.02
$\mathrm{Ag}-\mathrm{O}(5)$	$2 \cdot 86$	$0 \cdot 02$	0.01	2.89	0.02
$\mathrm{Ag}-\mathrm{Ag}(-x,-y,-z)$	2.877	0.006	0.014	2.849	0.007
Angles in degrees					
$\mathrm{O}(1)(-x,-y,-z)-\mathrm{Ag}-\mathrm{O}(2)$	$163 \cdot 1$	$0 \cdot 7$	1.0	$165 \cdot 2$	$0 \cdot 9$
$\mathrm{O}(5)-\mathrm{Ag}-\mathrm{O}(2)(-x+1,-y,-z)$	$146 \cdot 7$	$0 \cdot 5$	$0 \cdot 2$	145.6	0.6
$\mathrm{O}(1)(x, y, z-1)-\mathrm{Ag}-\mathrm{Ag}(-x,-y,-z)$	149.9	$0 \cdot 4$	0.7	$150 \cdot 5$	$0 \cdot 6$
$\mathrm{O}(1)(-x,-y,-z)-\mathrm{Ag}-\mathrm{O}(5)$	$103 \cdot 5$	0.6	$0 \cdot 5$	$104 \cdot 3$	$0 \cdot 8$
$\mathrm{O}(5)-\mathrm{Ag}-\mathrm{O}(2)$	73.0	$0 \cdot 6$	0.5	$72 \cdot 1$	0.7
$\mathrm{O}(2)-\mathrm{Ag}-\mathrm{O}(2)(-x+1,-y,-z)$	$73 \cdot 9$	$0 \cdot 6$	$0 \cdot 4$	$73 \cdot 6$	0.9
$\mathrm{O}(2)(-x+1,-y,-z)-\mathrm{Ag}-\mathrm{O}(1)(-x,-y,-z)$	109.0	$0 \cdot 6$	$0 \cdot 5$	109.2	0.8
$\mathrm{O}(1)(x, y, z-1)-\mathrm{Ag}-\mathrm{O}(5)$	101.5	$0 \cdot 6$	$1 \cdot 3$	$105 \cdot 1$	0.7
$\mathrm{O}(5)-\mathrm{Ag}-\mathrm{Ag}(-x,-y,-z)$	68.9	$0 \cdot 5$	$0 \cdot 1$	68.0	0.5
$\mathrm{Ag}(-x,-y,-z)-\mathrm{Ag}-\mathrm{O}(2)(-x+1,-y,-z)$	$110 \cdot 9$	$0 \cdot 4$	0.8	109.8	0.5
$\mathrm{O}(2)(-x+1,-y,-z)-\mathrm{Ag}-\mathrm{O}(1)(x, y, z-1)$	$92 \cdot 8$	$0 \cdot 5$	0.8	91.9	0.8
$\mathrm{O}(1)(-x,-y,-z)-\mathrm{Ag}-\mathrm{O}(1)(x, y, z-1)$	76.0	0.7	0.4	73.2	$1 \cdot 1$
$\mathrm{O}(1)(x, y, z-1)-\mathrm{Ag}-\mathrm{O}(2)$	$120 \cdot 9$	0.6	0.9	121.6	$0 \cdot 9$
$\mathrm{O}(2)-\mathrm{Ag}-\mathrm{Ag}(-x,-y,-z)$	$84 \cdot 7$	0.4	$0 \cdot 6$	$84 \cdot 7$	$0 \cdot 7$
$\mathrm{Ag}(-x,-y,-z)-\mathrm{Ag}-\mathrm{O}(1)(-x,-y,-z)$	79.1	$0 \cdot 5$	0.9	$80 \cdot 7$	$0 \cdot 7$
$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{Ag}$	120.8	1.5	$1 \cdot 3$	$120 \cdot 0$	$2 \cdot 0$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	$124 \cdot 9$	$2 \cdot 3$	1.9	124.9	$2 \cdot 6$
$\mathrm{Ag}(-x,-y,-z)-\mathrm{O}(1)-\mathrm{C}(1)$	130.0	1.7	$0 \cdot 8$	128.7	2.0

quoted are the mean values obtained from the three sets of data 1 , 2 and 3 collected at room temperature. These values are not significantly different from those obtained from the low temperature data (set 4).

Coordination of the silver atoms

The distances of the atoms close to the silver atom at less than $3 \AA$ and the relevant angles are listed in Table 4. The two silver atoms, related by the inversion centre at the origin, are separated by a mean distance of $2.88 \AA$, the same as that found in metallic silver ($2.889 \AA$; Wyckoff, 1965). They bridge the centro-
symmetrically related carboxyl groups, forming dimers of glycines as shown in Fig. 3. The silver atom is practically at the centre of the $\mathrm{O}(1)(-x,-y,-z)-$ $\mathrm{Ag}-\mathrm{O}(2)$ bond (the $\mathrm{Ag}-\mathrm{O}$ distances being 2.22 and $2 \cdot 25) \AA$, which is slightly non-linear ($\mathrm{O}-\mathrm{Ag}-\mathrm{O}=163^{\circ}$). Since the molecules exist as dimers because of silver bridging, the actual chemical formula of the compound is better represented by $\left(\mathrm{NH}_{3}^{+} \mathrm{CH}_{2} \mathrm{COO}^{-} \mathrm{Ag}^{+}\right)_{2}\left(\mathrm{NO}_{3}^{-}\right)_{2}$. The whole group of atoms consisting of $\mathrm{Ag}, \mathrm{O}(1)$, $O(2), C(1)$ and $C(2)$ and their centrosymmetrical equivalents is planar with the point group symmetry 2/m.

The complete surroundings of the silver atoms are
shown in Fig. 5. Besides the closest oxygens at 2.22 and $2 \cdot 25 \AA$, there is one more, $\mathrm{O}(1)(x, y, z-1)$ at a distance of $2.37 \AA$ from Ag. The four atoms [$\mathrm{O}(1)(x, y, z-1)$, $\mathrm{O}(2), \mathrm{O}(1)(-x,-y,-z)$ and Ag$]$ are coplanar and the silver coordination can be considered as triangular. The coordination polyhedron can be considered as a distorted octahedron if the next nearest neighbours viz. $\mathrm{O}(2)(-x+1,-y,-z)($ at $2.85 \AA), \mathrm{O}(5)($ at $2.86 \AA)$
and $\mathrm{Ag}(-x,-y,-z)($ at $2.88 \AA)$ are also taken into account.

Dimeric formation of carboxyl groups with short $\mathrm{Ag}-\mathrm{Ag}$ contacts has also been found in the structure of silver perfluorobutyrate [Blackslee \& Hoard, 1956; $\mathrm{Ag}-\mathrm{Ag}=2 \cdot 90$ (2) $\AA, \quad \mathrm{Ag}-\mathrm{O}=2.25 \AA$ and $\mathrm{O}-\mathrm{Ag}-\mathrm{O}=$ 160°. In this structure also, the two silver atoms and the carboxyl groups are coplanar with point

Table 5. Dimensions of glycine in GSN and other glycine compounds
The standard deviations are given in parentheses.
(a) Bond distances

Compound	$\mathrm{C}(1)-\mathrm{O}(1)$ (\AA)	$\mathrm{C}(1)-\mathrm{O}(2)$ (Å)	$\mathrm{C}(1)-\mathrm{C}(2)$ (A)	$\mathrm{C}(2)-\mathrm{N}(1)$ (\AA	$\mathrm{N}(1)-\mathrm{O}(2)$ (\AA	Reference
GSN at room temperature	$1 \cdot 28$ (3)	$1 \cdot 25$ (3)	1.54 (4)	$1 \cdot 50$ (4)	$2 \cdot 69$ (3)*	a
at low temperature	$1 \cdot 30$ (4)	$1 \cdot 28$ (4)	1.53 (4)	$1 \cdot 50$ (4)	$2 \cdot 67$ (4)	
α-Glycine	$1 \cdot 25$ (2)	$1 \cdot 27$ (2)	$1 \cdot 52$ (2)	$1 \cdot 39$ (2)		b
	$1 \cdot 255$ (5)	$1 \cdot 252$ (5)	1.523 (5)	1.474 (5)	$2 \cdot 690$ (5) \dagger	c
	$1 \cdot 265$ (5) \ddagger	$1 \cdot 261$ (5) \ddagger				
β-Glycine	$1 \cdot 25$	$1 \cdot 24$	1.52	1.48		d
	$1 \cdot 257$ (15)	$1 \cdot 233$ (15)	$1 \cdot 521$ (15)	1.484 (15)		e
γ-Glycine	1.22	1.29	1.53	1.46		f
	$1 \cdot 237$ (11)	$1 \cdot 254$ (11)	$1 \cdot 527$ (11)	1.491 (11)	$2 \cdot 687$ (11)	g
Diglycine hydrochloride	$1 \cdot 320$ (30)	1.235 (30)	$1 \cdot 480$ (30)	1.521 (30)	$2 \cdot 70$	h
	$1 \cdot 294$ (30)	1.254 (30)	$1 \cdot 485$ (30)	1.528 (30)	$2 \cdot 70$	
	$1 \cdot 310$ (10)	1.223 (10)	$1 \cdot 508$ (10)	1.487 (10)		i
	$1 \cdot 263$ (10)	$1 \cdot 269$ (10)	$1 \cdot 500$ (10)	1.502 (10)		
Diglycine hydrobromide	1.29	$1 \cdot 25$	$1 \cdot 52$	1.52		j
	$1 \cdot 22$	$1 \cdot 24$	$1 \cdot 50$	1.56		
	$1 \cdot 30$	$1 \cdot 225$	1.505	1.535		k
	$1 \cdot 225$	$1 \cdot 255$	1.53	1.52		
Diglycine nitrate at room temp.	1.257 (14)	1.225 (13)	1.527 (15)	1.503 (14)	$2 \cdot 705$ (12)	l
	$1 \cdot 288$ (12)	$1 \cdot 244$ (12)	$1 \cdot 492$ (14)	$1 \cdot 482$ (14)	$2 \cdot 673$ (12)	
at $-150^{\circ} \mathrm{C}$	1.278 (17)	$1 \cdot 236$ (16)	$1 \cdot 528$ (18)	$1 \cdot 466$ (19)	2.709 (15)	
	$1 \cdot 285$ (17)	$1 \cdot 232$ (16)	$1 \cdot 536$ (18)	$1 \cdot 456$ (18)	$2 \cdot 663$ (14)	
Triglycine sulphate	$1 \cdot 230$ (40)	1.289 (40)	1.547 (40)	$1 \cdot 455$ (40)	2.580 (40)	m
	$1 \cdot 294$ (40)	$1 \cdot 230$ (40)	1.554 (40)	$1 \cdot 535$ (40)	2.691 (40)	
	$1 \cdot 314$ (40)	$1 \cdot 251$ (40)	$1 \cdot 513$ (40)	$1 \cdot 467$ (40)	2.713 (40)	
	1.230	1.289	1.547	1.4568		
	1.294	$1 \cdot 230$	1.554	1.535		
	$1 \cdot 314$	1-211§	$1 \cdot 513$	$1 \cdot 4438$		
Copper glycine $\mathrm{H}_{2} \mathrm{O}$	$1 \cdot 26$ (5)	1.23 (5)	1.44 (6)		3.01 (4)	n
	1.29 (5)	$1 \cdot 27$ (5)	$1 \cdot 47$ (6)	$1 \cdot 48$ (6)	3.01 (4)	
	$1 \cdot 226$ (15)	$1 \cdot 275$ (14)	1.498 (17)	1.473 (16)	2.663 (14)	0
	$1 \cdot 243$ (15)	$1 \cdot 291$ (15)	1.541 (18)	$1 \cdot 484$ (17)	$2 \cdot 691$ (16)	
Nickel glycine $\mathbf{2 H}_{\mathbf{2}} \mathrm{O}$	1.29	1.25	1.50	1.42		p
	$1 \cdot 26$ (1)	$1 \cdot 28$ (1)	$1 \cdot 52$ (1)	$1 \cdot 47$ (1)		q
Platinum glycine	1.231 (7)	$1 \cdot 290$ (6)	1.510 (8)	1.496 (7)		r
Diglycine barium chloride $\mathrm{H}_{2} \mathrm{O}$	$1 \cdot 172$	1.293	1.526	$1 \cdot 507$		s
Diglycine strontium chloride $3 \mathrm{H}_{2} \mathrm{O}$	1.247	1.248	1.519	1.481		s
Diglycine manganous chloride	1.278	1.254	1.512	1.508**		s
Cadmium glycine	1-29**	1-23**	1-58**	1-46**	2•93**	t

Table 5 (cont.)
(b) Bond angles and the deviation of the terminal nitrogen atom from the plane of the carboxyl group and the α-carbon atom

Compounds $\quad 0$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$\underset{\left({ }^{\circ}\right)}{\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)}$	$\underset{\left({ }^{\circ}\right)}{\mathrm{C}(1)-\mathrm{C}(1)-\mathrm{N}(1)}$	$\Delta(\AA) \mathrm{R}$	rence
GSN at room temp.	125 (2)	116 (3)	119 (2)	110 (3)	0.33*	a
at low temp.	125 (3)	116 (3)	119 (3)	109 (3)	0.31	
α-Glycine	$\begin{aligned} & 122(3) \\ & 125 \cdot 5^{(3)} \end{aligned}$	$\begin{aligned} & 119(3) \\ & 117 \cdot 1(3) \end{aligned}$	$\begin{aligned} & 119(3) \\ & 117 \cdot 4(3) \end{aligned}$	$\begin{aligned} & 112(3) \\ & 111 \cdot 8(3) \end{aligned}$	$\begin{aligned} & 0.268 \\ & 0.436 \end{aligned}$	$\begin{aligned} & b \\ & c \end{aligned}$
β-Glycine	$\begin{aligned} & 126 \\ & 126 \cdot 2(9) \end{aligned}$	$\begin{aligned} & 116 \\ & 115 \cdot 9(9) \end{aligned}$	$\begin{aligned} & 118 \\ & 117.8(9) \end{aligned}$	$\begin{aligned} & 111 \\ & 110.8(9) \end{aligned}$	$\begin{aligned} & 0.59 \\ & 0.583 \end{aligned}$	$\underset{e}{d}$
γ-Glycine	$\begin{aligned} & 122 \\ & 125 \cdot 4(7) \end{aligned}$	$\begin{aligned} & 114 \\ & 116 \cdot 2(7) \end{aligned}$	$\begin{aligned} & 122 \\ & 118 \cdot 3(7) \end{aligned}$	$\begin{aligned} & 107 \\ & 110 \cdot 8(7) \end{aligned}$	$0 \cdot 309$	f
Diglycine hydrochloride	$\begin{aligned} & 124 \cdot 1 \text { (7) } \\ & 124 \cdot 4 \text { (7) } \\ & 124 \cdot 7 \\ & 125 \cdot 7 \end{aligned}$	$\begin{aligned} & 113 \cdot 0(7) \\ & 116 \cdot 1(7) \\ & 113 \cdot 3 \\ & 117 \cdot 2 \end{aligned}$	$\begin{aligned} & 122 \cdot 9(7) \\ & 119 \cdot 5(7) \\ & 122 \cdot 2 \\ & 117 \cdot 2 \end{aligned}$	$\begin{aligned} & 109 \cdot 4(7) \\ & 112.0(7) \\ & 110 \cdot 2 \\ & 114.0 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.04 \end{aligned}$	h
Diglycine hydrobromide	$\begin{aligned} & 128 \\ & 128 \\ & 130 \\ & 127 \end{aligned}$	$\begin{aligned} & 121 \\ & 114 \\ & 113 \\ & 115 \end{aligned}$	$\begin{aligned} & 112 \\ & 119 \\ & 117 \\ & 118 \end{aligned}$	$\begin{aligned} & 111 \\ & 113 \\ & 107 \\ & 113 \end{aligned}$	$\begin{aligned} & 0.49 \\ & 0.00 \end{aligned}$	j k
Diglycine nitrate at room temperature	$\begin{array}{ll} & 127.2(1.0) \\ \mathrm{re} & 124.6(9) \end{array}$	$\begin{aligned} & 114 \cdot 1 \text { (9) } \\ & 114 \cdot 0(8) \end{aligned}$	$\begin{aligned} & 118 \cdot 6(1 \cdot 0) \\ & 121 \cdot 1(9) \end{aligned}$	$\begin{aligned} & 112 \cdot 1(9) \\ & 110 \cdot 1(8) \end{aligned}$	$\begin{aligned} & 0.162 \\ & 0.146 \end{aligned}$	l
at $-150^{\circ} \mathrm{C}$	$\begin{aligned} & 125.9(1 \cdot 2) \\ & 127 \cdot 0(1 \cdot 2) \end{aligned}$	$\begin{aligned} & 113 \cdot 1(1 \cdot 1) \\ & 114 \cdot 3(1 \cdot 1) \end{aligned}$	$\begin{aligned} & 121 \cdot 0(1 \cdot 2) \\ & 118 \cdot 7(1 \cdot 2) \end{aligned}$	$\begin{aligned} & 111 \cdot 1(1 \cdot 1) \\ & 111 \cdot 0(1 \cdot 0) \end{aligned}$	$\begin{aligned} & 0.025 \\ & 0.008 \end{aligned}$	
Triglycine sulphate	$\begin{aligned} & 125 \cdot 9(3 \cdot 5) \\ & 125 \cdot 4(3 \cdot 5) \\ & 122 \cdot 9(3 \cdot 5) \end{aligned}$	$\begin{aligned} & 115 \cdot 1(3 \cdot 5) \\ & 113 \cdot 1(3 \cdot 5) \\ & 111 \cdot 3(3 \cdot 5) \end{aligned}$	$\begin{aligned} & 115 \cdot 3(3 \cdot 5) \\ & 121 \cdot 5(3 \cdot 5) \\ & 119 \cdot 2(3 \cdot 5) \end{aligned}$	$\begin{aligned} & 109 \cdot 3(3.5) \\ & 107.1(3.5) \\ & 110 \cdot 2(3.5) \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.269 \\ & 0.000 \end{aligned}$	m
	$\begin{aligned} & 125 \cdot 9 \\ & 125 \cdot 4 \\ & 126 \cdot 4 \S \end{aligned}$	$\begin{aligned} & 118 \cdot 5 \S \\ & 113 \cdot 1 \\ & 111 \cdot 3 \end{aligned}$	$\begin{aligned} & 115 \cdot 3 \\ & 121 \cdot 5 \\ & 122 \cdot 2 \S \end{aligned}$	$\begin{aligned} & 108 \cdot 7 \S \\ & 107 \cdot 1 \\ & 111 \cdot 5 \S \end{aligned}$	$\begin{aligned} & 0.004 \S \\ & 0.269 \\ & 0.154 \S \end{aligned}$	
Copper glycine $\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 123 \\ & 127 \\ & 124 \cdot 3(1 \cdot 0) \\ & 122 \cdot 8(1 \cdot 0) \end{aligned}$	$\begin{aligned} & 118 \\ & 116 \\ & 118.3(1.0) \\ & 119.7(1.0) \end{aligned}$	$\begin{aligned} & 119 \\ & 117 \\ & 117.4(1.0) \\ & 117.5(1.0) \end{aligned}$	$\begin{aligned} & 115 \\ & 116 \\ & 112.6(1.0) \\ & 111.3(1.0) \end{aligned}$	$\begin{aligned} & 0.103 \\ & 0 \cdot 162 \end{aligned}$	n o
Nickel glycine $\mathbf{2 H}_{2} \mathrm{O}$	$\begin{aligned} & 122 \\ & 124 \cdot 8(9) \end{aligned}$	$\begin{aligned} & 123 \\ & 118 \cdot 4(7) \end{aligned}$	$\begin{aligned} & 115 \\ & 116 \cdot 8(7) \end{aligned}$	$\begin{aligned} & 103 \\ & 111 \cdot 1(6) \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.61 \end{aligned}$	$\begin{aligned} & p \\ & q \end{aligned}$
Platinum glycine	$122 \cdot 2$ (5)	120.7 (5)	116.8 (4)	111.1 (5)	0.32	r
Diglycine barium chloride $\mathrm{H}_{2} \mathrm{O}$	$124 \cdot 2$	116.0	$119 \cdot 8$	111.7	$0 \cdot 158$	s
Diglycine strontium chloride $3 \mathrm{H}_{2} \mathrm{O}$	$124 \cdot 2$	$116 \cdot 4$	119.4	$111 \cdot 5$	$0 \cdot 141$	s
Diglycine manganous chloride	$124 \cdot 8$	$115 \cdot 7$	119.5	$110 \cdot 5$	0.703	\boldsymbol{s}
Cadmium glycine	121**	115**	123**	115**		t

[^1]Table 5 (cont.)
References: a This work; b Albrecht \& Corey (1939); c Marsh (1958); d Iitaka (1959); e Iitaka (1960); f Iitaka (1958); g Iitaka (1961); h Hahn \& Buerger (1957); i Hahn (1960); j Buerger, Barney \& Hahn (1956); k Hahn (1959); l Sato (1968); m Hoshino, Okaya \& Pepinsky (1959); n Tomita \& Nitta (1961); o Freeman, Snow, Nitta \& Tomita (1964); p Stosick (1945); q Freeman \& Guss (1968); r Freeman \& Golomb (1969); s Narayanan \& Venkataraman (1970); t Low, Hirshfeld \& Richards (1959).

The crystal structure of zinc glycine has been solved only in projection (Low, Hirshfeld \& Richards, 1959). The details of the crystal structure analyses of glycine ferrous sulphate pentahydrate (Lindqvist \& Rosenstein, 1960) and triglycine neodymium chloride trihydrate (Belyaeva, Porai-Koshits, Malinovskii, Aslanov, Sukhanova and Martynenko, 1969) are not known.
group symmetry $2 / m$. In silver oxalate (Griffith, 1943; $\mathrm{Ag}-\mathrm{Ag}=3.34 \AA, \mathrm{Ag}-\mathrm{O}=2 \cdot 17,2 \cdot 30 \AA$) and potassium silver carbonate [Barclay \& Hoskins, 1963; $\mathrm{Ag}-\mathrm{Ag}=$ $\left.3.00,3.21 \AA ; \mathrm{Ag}-\mathrm{O}=2.09(4) \AA ; \mathrm{O}-\mathrm{Ag}-\mathrm{O}=170(2)^{\circ}\right]$ the molecules form infinite chains instead of dimers.

The sum of the covalent radii for silver and oxygen atoms is about $2 \cdot 10 \AA$ (Pauling, 1960). $\mathrm{Ag}_{2} \mathrm{O}$ represents a structure having this type of bond with a linear $\mathrm{O}-\mathrm{Ag}-\mathrm{O}$ coordination ($\mathrm{Ag}-\mathrm{O}=2.04 \AA$; $\mathrm{Ag}-\mathrm{Ag}=$ $3.34 \AA$; Wyckoff, 1965). In KAgO, there are square groups of $\mathrm{Ag}_{4} \mathrm{O}_{4}$ with the oxygens at the corners and the silvers at the centre of the edges of the square $\left(\mathrm{Ag}-\mathrm{O}=2.17 \AA ; \quad \mathrm{Ag}-\mathrm{Ag}=2.91 \AA ; \quad \mathrm{O}-\mathrm{Ag}-\mathrm{O}=174^{\circ}\right.$; Sabrowsky \& Hoppe, 1968). In crystals where the interaction between metal and oxygen is predominantly ionic, the expected $\mathrm{Ag}-\mathrm{O}$ distance is about $2 \cdot 5 \AA$ (Helmholz \& Levine, 1942). Structures representing this type are AgNO_{3} (Lindley \& Woodward, 1966), AgNO_{2} (Long \& Marsh, 1962), AgClO_{2} (Cooper \& Marsh, 1961) and AgClO_{3} (Naray-Szabo \& Pocza, 1942). It may, therefore, be concluded that the interactions $\mathrm{Ag}-\mathrm{O}(1)(-x,-y,-z)$ and $\mathrm{Ag}-\mathrm{O}(2)$ in GSN are more covalent than ionic.

Dimensions of the glycine group

The dimensions of glycine in GSN, together with those found in other glycine structures are given in Table $5(a)$ and (b) as no such detailed comparison is available elsewhere. The atoms $\mathrm{C}(1), \mathrm{O}(1), \mathrm{O}(2)$ and C(2) (Figs. 3 and 4) are coplanar, the equations of the mean planes obtained from different sets of data being given in Table 6. The terminal nitrogen atom, $\mathrm{N}(1)$, is out of the mean plane by $0.33 \AA$ and, as the non planarity of the glycine group normally indicates zwitterionic nature, the glycine group in GSN exists as $\mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$. There is no significant difference between the two $\mathrm{C}-\mathrm{O}$ bonds, and the $\mathrm{C}(1)-\mathrm{C}(2)$ bond has the usual single bond length.

Dimensions of the nitrate group

The dimensions of the nitrate group are given in Table 7. The nitrate group is planar with the three $\mathrm{N}-\mathrm{O}$ distances approximately equal within the accuracy of this work. The three $\mathrm{O}-\mathrm{N}-\mathrm{O}$ angles vary from 112 to 124° showing the absence of $D_{3 h}$ symmetry. The equa-
tion of the mean plane of the nitrate group for the four different sets of data is given in Table 8.

Table 6. Mean planes for the glycine group obtained from different sets of data (Blow, 1960)
The coefficients A, B, C and D are defined so that $A X+B Y+$ $C Z+D=0$ where $X=x+z \cos \beta, Y=y, Z=z \sin \beta . \Delta$ represents the deviation of the atom in the parentheses from the mean plane. The nitrogen atom, $N(1)$, was not included in the mean plane calculations.

	Set 1	Set 2	Set 3	Mean	Set 4 L.T.
A	-0.493	-0.541	-0.505	-0.513	-0.525
B	0.804	0.776	0.797	0.792	0.793
C	-0.333	-0.324	-0.332	-0.330	-0.309
D	$0 \cdot 274$	0.384	$0 \cdot 301$	$0 \cdot 320$	$0 \cdot 340$
$\Delta[\mathrm{C}(1)]$	0.020	-0.044 \AA	0.011 A	A -0.004 \AA	0.006 A
$\Delta[\mathrm{C}(2)]$	-0.006	0.012	-0.003	0.001	-0.002
$4[\mathrm{O}(1)$]	-0.007	0.016	-0.004	0.002	-0.002
$\Delta[\mathrm{O}(2)]$	-0.007	0.017	-0.004	0.002	-0.002
$\Delta[\mathrm{N}(1)]$	0.392	$0 \cdot 253$	0.335	$0 \cdot 327$	$0 \cdot 306$

Fig. 6. A view of the hydrogen bonding (broken lines) in the structure. The atoms in asymmetric part I have the coordinates x, y, z and those in II have the coordinates $\frac{1}{2}+x$, $\frac{1}{2}-y, z$.

Table 7. Dimensions of the nitrate group in the structure
The maximum standard deviation as well as the maximum deviation from the mean value corresponding to the data sets 1,2 and 3 at room temperature are given along with the values at low temperature.

	Mean value	At room temperature Max. standard deviation	Max. deviation from the mean	At low temperature	
				Value	Standard deviation
Distances (\AA)					
$\mathrm{N}(2)-\mathrm{O}(3)$	1.26	0.03	$0 \cdot 04$	1.23	0.04
$\mathrm{N}(2)-\mathrm{O}(4)$	1.25	0.04	$0 \cdot 04$	1.25	0.04
$\mathrm{N}(2)-\mathrm{O}(5)$	$1 \cdot 28$	$0 \cdot 03$	$0 \cdot 04$	$1 \cdot 34$	0.03
Angles (${ }^{\circ}$)					
$\mathrm{O}(3)-\mathrm{N}(2)-\mathrm{O}(4)$	123	2	2	124	3
$\mathrm{O}(3)-\mathrm{N}(2)-\mathrm{O}(5)$	116	2	2	112	3
$\mathrm{O}(4)-\mathrm{N}(2)-\mathrm{O}(5)$	120	2	2	124	3

Table 8. Mean planes for the nitrate group obtained from different sets of data (Blow, 1960)
The coefficients A, B, C and D are defined so that $A X+B Y+$ $C Z+D=0$ where $X=x+z \cos \beta, \quad Y=y, \quad Z=z \sin \beta . \Delta$ represents the deviation of the atom in the parentheses from the mean plane.

					Set 4
	Set 1	Set 2	Set 3	Mean	L.T.
A	-0.772	-0.769	-0.772	-0.771	-0.752
B	0.636	0.638	0.636	0.637	0.659
C	-0.010	-0.026	-0.017	-0.018	-0.020
D	-2.064	-2.103	-2.060	-2.076	-2.115
	$\AA(\mathrm{~N}(2)]$				
$0.030 \AA$	$0.072 \AA$	$0.029 \AA$	$0.044 \AA$	$-0.006 \AA$	
$\Delta[\mathrm{O}(3)]$	-0.010	-0.25	-0.009	-0.015	0.002
$\Delta[\mathrm{O}(4)]$	-0.011	-0.024	-0.010	-0.015	0.002
$\Delta[\mathrm{O}(5)]$	-0.009	-0.022	-0.009	-0.013	0.002
	Hydrogen bonding				

Because of the zwitterionic nature of glycine as mentioned earlier, there are three protons attached to the terminal nitrogen atom $\mathrm{N}(1)$. There are three oxygen atoms (see Fig. 6) belonging to different nitrate groups at less than $3 \AA$ from $\mathrm{N}(1)$, and directed towards the corners of a pyramid. These three bonds have, therefore, been identified as the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds in the structure. The relevant distances and the Donohue angles are presented in Table 9. The bond $\mathrm{N}(1)-\mathrm{H} \cdots \mathrm{O}(3)\left(\frac{1}{2}+x, \frac{1}{2}-y, z\right)$ is approximately perpendicular to the a axis and is almost parallel to the b axis, the polar direction in the ferroelectric phase.

Packing

Figs. 2, 3 and 4 illustrate the packing of the molecules in the crystal structure. Dimers of glycines in neighbouring unit cells translated by c are connected by $\mathrm{Ag}-\mathrm{O}(1)(x, y, z-1)$ resulting in infinite chains along the c axis. Apart from the hydrogen bonded $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ contacts mentioned above, there are three short contacts in the structure: $\mathrm{C}(1)-\mathrm{O}(3), \mathrm{C}(2)-\mathrm{O}(3)$ and $\mathrm{C}(2)-\mathrm{O}(5)(x+1, y, z+1)$ (see Table 10). The dihedral angle between the glycine and the nitrate planes is 25°.

Ferroelectricity and crystal structure

The only other glycine-containing ferroelectric crystals for which the structures have been solved are triglycine sulphate (TGS; Hoshino, Okaya \& Pepinsky, 1959) and diglycine nitrate (DGN; Sato, 1968). Both these structures, in the paraelectric phase contain atoms or groups of atoms in special positions unlike the structure of GSN. In TGS, one of the three glycines lies on the mirror plane and the sulphur atom is at the intersection of the 2_{1} screw and the mirror plane. In DGN, the nitrate group is disordered with the nitrogen occupying an inversion centre. In the ferroelectric phase, these atoms in both the crystals no longer occupy special positions. Also, in both these structures, there is a strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bond $(2 \cdot 44 \AA$ long) bridging two glycine oxygens, and the movement of the hydrogen atom along this bond is assumed to be responsible for the ferroelectric transitions.
From the infrared studies, Warrier \& Narayanan (1967; see also Narayanan and Warrier, 1967) concluded that the rapid reorientation of the NH_{3}^{+}groups or alignment of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds may not play any direct role in the ferroelectric behaviour of GSN. Easwaran (1966) from p.m.r. studies came to a similar conclusion that the protons do not play any part in the ferroelectric transition in the crystal. These authors suggested that silver played an important role. As mentioned in the introduction, the partial substitution of silver by lithium or thallium in GSN elevates its Curie point. The silver atom and its position in the structure are therefore likely to have the most prominent role in the phase transition of this crystal. As described earlier, the silver atoms occupy the centres of $\mathrm{O}-\mathrm{Ag}-\mathrm{O}$ bonds between centrosymmetrically related glycines, the entire group of atoms (except for the end nitrogens and the hydrogens) having the $2 / m$ symmetry. On the lowering of temperature, the silver atoms are likely to move in such a way that this inversion centre is lost, giving rise to ferroelectricity in the crystal.

The authors thank Professor P. S. Narayanan for many valuable discussions and Professor R. S. Krishnan for his interest in this work. They thank the Neutron Diffraction Group of the Bhabha Atomic Research Centre, Bombay and the Crystallography Group of the University of Madras for permission to use some of their programs. One of the authors (J.K. M.R.) thanks the Council of Scientific and Industrial Research, New Delhi, for the award of a Senior Research Fellowship.

References

Albrecht, G. \& Corey, R. B. (1939). J. Amer. Chem. Soc. 61, 1087.
Barclay, G. A. \& Hoskins, B. F. (1963). J. Chem. Soc. p. 2807.

Belyaeva, K. F., Porai-Koshits, M. A., Malinovskii, T. I., Aslanov, L., Sukhanova, L. S. \& Martynenko, L. I. (1969). Zh. Strukt. Khim. 10, 557. Chem. Abs. (1969) 71, 85659 k .
Blackslee, A. E. \& Hoard, J. L. (1956). J. Amer. Chem. Soc. 78, 3029.
Blow, D. M. (1960). Acta Cryst. 13, 168.
Buerger, M. J., Barney, E. \& Hahn, T. (1956). Z. Kristallogr. 108, 130.

Cooper, J. \& Marsh, R. E. (1961). Acta Cryst. 14, 202.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104. Cruickshank, D. W. J. (1965). Computing Methods in Crystallography. Chapter 13, Edited by J. S. Rollett. Oxford: Pergamon Press.
Easwaran, K. R. K. (1966). J. Phys. Soc. Japan, 21, 1614.
Freeman, H. C. \& Golomb, M. L. (1969). Acta Cryst. B25, 1203.

Freeman, H. C. \& Guss, J. M. (1968). Acta Cryst. B24, 1133.

Freeman, H. C., Snow, M. R., Nitta, I. \& Tomita, K. (1964). Acta Cryst. 17, 1463.

Grainger, C. T. (1969). Acta Cryst. A25, 427.
Griffith, R. L. (1943). J. Chem. Phys. 11, 499.
Hahn, T. (1959). Z. Kristallogr. 111, 161.
Hahn, T. (1960). Z. Kristallogr. 113, 403.
Hahn, T. \& Buerger, M. J. (1957). Z. Kristallogr. 108, 419.
Hamilton, W. C. (1959). Acta Cryst. 12, 609.
Helmholz, L. \& Levine, R. (1942). J. Amer. Chem. Soc. 64, 354.
Hoshino, S., Okaya, Y. \& Pepinsky, R. (1959). Phys. Rev. 115, 323. See also Structure Reports for 1959. (1965). 23, 590.
Iitaka, Y. (1958). Acta Cryst. 11, 225.
IITAKA, Y. (1959). Nature, Lond. 183, 390.
Iitaka, Y. (1960). Acta Cryst. 13, 35.
Iitaka, Y. (1961). Acta Cryst. 14, 1.

Table 9. Hydrogen bond distances and Donohue angles
The maximum standard deviation as well as the maximum deviation from the mean value corresponding to the data sets 1,2 and 3 at room temperature are given along with the values at low temperature.

\left.	At room temperature				
Max.					$\right]$

Table 10. Short contacts in the structure
The maximum standard deviation as well as the maximum deviation from the mean value corresponding to the data sets 1,2 and 3 at room temperature are given along with the values at low temperature.

	Mean value	At room temperature Max. standard deviation	Max. deviation from the mean	At low temperature	
Distances (\AA)					
C(1)-O(3)	2.95	$0 \cdot 03$	0.07	2.98	0.04
$\mathrm{C}(2)-\mathrm{O}(5)(x+1, y, z+1)$	2.95	0.04	0.05	2.96	0.03
$\mathrm{C}(2)-\mathrm{O}(3)$	3.06	$0 \cdot 03$	$0 \cdot 02$	$3 \cdot 11$	0.04
Angle (${ }^{\circ}$)					
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(3)$	79	1	3	80	1

Kannan, K. K. (1965). Thesis, Indian Institute of Science, Bangalore.
Lindley, P. F. \& Woodward, P. (1966). J. Chem. Soc. (A), p. 123.
Lindqvist, I. \& Rosenstein, R. (1960). Acta Chem. Scand. 14, 1228.
Long, R. E. \& Marsh, R. E. (1962). Acta Cryst. 15, 448.

Low, B. W., Hirshfeld, F. L. \& Richards, F. M. (1959). J. Amer. Chem. Soc. 81, 4412.

Marsh, R. E. (1958). Acta Cryst. 11, 654.
Mitani, S. (1964). J. Phys. Soc. Japan, 19, 481.
Mohana Rao, J. K. (1968). Indian J. Pure Appl. Phys. 6, 51.

Narayanan, P. \& Venkataraman, S. (1970). Curr. Sci. 39, 147.
Narayanan, P. S. \& Warrier, A. V. R. (1967). Proc. Int. Conf. Spectrosc. Bombay. 2, 312.
Naray-Szabo, St. V. \& Pocza, J. (1942). Z. Kristallogr. 104, 28.
Pauling, L. (1960). The Nature of Chemical Bond. Chapter 7, pp. 224, 256. Ithaca: Cornell Univ. Press.

Pepinsky, R., Okaya, Y., Eastman, D. P. \& Mitsul, T. (1957). Phys. Rev. 107, 1538.

Pepinsky, R., Vedam, K., Hoshino, S. \& Okaya, Y. (1958). Phys. Rev. 111, 430.
Pepinsky, R., Vedam, K. \& Okaya, Y. (1958). Phys. Rev. 110, 1309.
Phillips, D. C. (1954). Acta Cryst. 7, 746.
Sabrowsky, H. \& Hoppe, R. (1968). Z. anorg. allgem. Chem. 358, 241.
Sato, S. (1968). J. Phys. Soc. Japan 25, 185.
Stosick, A. J. (1945). J. Amer. Chem. Soc. 67, 365.
Tiwary, H. V., Devanarayanan, S. \& Narayanan, P. S. (1969). Ind. J. Pure Appl. Phys. 7, 655.

Tomita, K. \& Nitta, I. (1961). Bull. Chem. Soc. Japan 34, 286.

Viswamitra, M. A. (1971). To be published.
Viswamitra, M. A. \& Kannan, K. K. (1962). J. Sci. Instrum. 39, 318.
Warrier, A. V. R. \& Narayanan, P. S. (1967). Proc. Ind. Acad. Sci. 66 A, 46.
Wyckoff, R. W. G. (1965). Crystal Structures, Vol. 1, 2nd ed. pp. 10, 331.

The Determination of Absolute Configuration and $\Delta f^{\prime \prime}$ Values for Light-Atom Structures*

By D. W. Engel \dagger
Max-Planck-Institut für Eiweiss- und Lederforschung, Abteilung für Röntgenstrukturforschung, 8 München 15, Schillerstrasse 46, Germany (BRD)

(Received 10 August 1971)

Abstract

The absolute configurations of 7 compounds containing only C, H and O atoms have been determined by careful measurement of about 20 Bijvoet differences for each compound using $\mathrm{Cu} K \alpha$ radiation. A highly significant indication was obtained even in unfavourable cases with poorly refined structures ($R>10 \%$) or structures with very low oxygen content. A comparison of R values for the two enantiomers without considering the Bijvoet differences did not give significant indications. The generally weak intensities were measured with high precision using an alternating procedure and were corrected for absorption. Multiple diffraction was identified as an important cause of systematic errors. A value of 0.0182 ± 0.0008 for the quantity $\Delta f_{\mathrm{O}}: \mathrm{c}$ was deduced from the measurements. Values of $n=2.78 \pm 0.06$ and $C=4.66 \pm 0.25$ were calculated for the parameters in the empirical relation

$$
\Delta f^{\prime \prime}=C\left(\lambda / \lambda_{K}\right)^{n-1}
$$

using the above result and Zachariasen's data on quartz. $\Delta f^{\prime \prime}$ values obtained from the above equation agree well with Cromer's values calculated from atomic wave functions assuming $n=2.75$ for the K shells. The importance of obtaining further experimental values of $\Delta f^{\prime \prime}$ is stressed.

Introduction

The determination of absolute configuration by X-ray methods has recently been extended to light-atom structures using the very small anomalous scattering power of oxygen (Hope \& de la Camp, 1969; Thiessen

[^2]\& Hope, 1970; Moncrief \& Sims, 1969; Neidle \& Rogers, 1970). The methods used were the 'Bijvoet method' (measurement of Bijvoet differences) and the ' R method' (see Hamilton, 1965, example 4) modified by limiting the R-value comparison of the two enantiomers to a set of 'sensitive' reflexions.
In this paper the techniques of measurement and statistical evaluation developed during the course of an investigation of 7 substances are reported. The refined method is now capable of producing significant results in unfavourable (practical) cases. The power of

[^0]: * Present address: Department of Physics, Madurai University, Madurai, S. India.

[^1]: * The maximum deviation from the mean of the three sets of data at room temperature for GSN varies from 0.00 to $0.02 \AA$ in the case of bond distances and $1-2^{\circ}$ in the case of angles.
 \dagger Quoted in litaka (1961).
 \ddagger Bond distances corrected for librations.
 § Calculated with the coordinates (in Structure Reports, 1959).
 ** Calculated with the coordinates (by the authors).

[^2]: * Part of a doctoral thesis submitted by the author to the Technische Universität, München.
 \dagger Present address: Physics Department, University of the Orange Free State, P.O. Box 339, Bloemfontein, South Afriea.

